墨西哥开始接种中国科兴新冠疫苗 综合消息:突尼斯变异新冠病毒系本土演化而来 中东多国加快疫苗接种进程 长春大众卓越女足昆明集中 开启第二阶段冬训备战新赛季 “春风行动”全面启动 研考初试成绩本月陆续发布 长春市文庙博物馆将举办元宵节线上公益文化活动 美失业率上升“新穷人”领救济 记者探访救济食品分发站 起步就是冲刺!牛年伊始长春多个项目火热开工! 吉林省全力抓好煤矿安全生产监管 全国大部分农区陆续忙碌起来 田间地头一派生机盎然 3天3夜跑了500公里!成都大叔完成极限超跑挑战 4天致8次高铁晚点:铁路部门提醒放风筝远离铁路电力网 26日天宇见证浪漫一幕:"元宵月"巧遇"黄帝星" 猜灯谜、做灯笼 长春市图书馆“闹春图”元宵节系列活动来了 重庆返岗复工农民工达260余万人 返岗率逾六成 美国新冠肺炎死亡人数超50万 超一战二战和越战美阵亡者总和 第五届联合国环境大会召开 中方呼吁采取全球行动应对环境问题 机场“逐鸟人”:黑脸蛋是我们的“标配” 吉林省人社厅发布通知,2021年社会保险缴费有新变化! 伊朗最高领袖:如有需要或将浓缩铀丰度提高至60% 国资委:支持央企加快国有资本的布局优化和结构调整 亚泰广州冬训先“瘦身”再“增肌” 内外援引进工作将全面展开 零距离!揭开天问一号火星环绕器神秘面纱 洮南:强化政务大厅疫情防控 确保群众办事安全 谭德塞:全球各地都进行新冠疫苗接种符合所有国家的利益 智利累计新冠确诊病例超80万例 外企看中国丨专访IBM大中华区首席执行官:我们期待在中国“云”端舞出新姿 嫦娥五号带回月壤 3月将在国家博物馆展出 牛年元宵节 十六月最圆 利益联结产业链上游,伊利全面助力东北地区乡村振兴 春节假期后文旅新风尚 开春如何玩得更尽兴? 长春新区:打造“升级版”营商环境 省运管局指导各地全面有序恢复道路旅客运输服务 游客捞取泉池内硬币引发争议 趵突泉景区回应 一派生机盎然!湖北武汉:开启“全城赏花”模式 澳大利亚学者认为比特币价值被高估 北京汤圆元宵抽检全合格 温馨提示:带冰霜的别买 刚果(金)总统谴责联合国车队遇袭事件 湖南两名男子爆竹炸6条小鱼被取保候审 同时段播放全国第一,实时收视率破1!电视剧《鲜花盛开的山村》,不一样的乡村戏! 挂着名校牌子,收费高,却很孬!有名无实的“冠名办校”值得警惕 联合国人权理事会第46届会议昨日开幕 中方代表发表视频致辞 注意!吉林省这5批次食品不合格! 非洲新冠确诊超383万例 多国持续推进疫苗接种 吉林省退役军人事务厅发布“清明•致敬英雄”主题征文、摄影征集评选活动的公告 @吉林人,坚持完今天,24日气温将回升了! 推动两国关系重回正轨 女童海洋公园爬凳摔伤 脸缝4针 家长要求园方赔偿合理吗? 为中国疫苗投下信任票 多国领导人“带头”接种 海外网评:50万条逝去的生命,美国无法治愈之痛
您的位置:首页 >财经 >

2019首个诺奖:氧气决定人类命运 癌症新疗法来了?

2019-10-07 20:55:00来源:中国基金报

  国庆黄金周今天结束,接下来是诺贝尔奖的黄金周。

  第118个诺贝尔奖“开奖周”即将开启。若要问如今世界上最受欢迎的奖项是什么?诺贝尔奖绝对是当之无愧的首选。无论是文学、经济还是科学领域,无数优秀从业者都将这个奖项视为最高荣誉。

  10月7日傍晚,瑞典卡罗琳斯卡医学院在斯德哥尔摩宣布,将2019年诺贝尔生理学或医学奖授予Kaelin, Ratcliffe, Semenza,以表彰他们革命性地发现让人们理解了细胞在分子水平上感受氧气的基本原理,他们主要是通过对低氧诱导因子hif水平调节机制的深入研究。

  他们分别是来自哈佛医学院Dana-Farber癌症研究所的William G. Kaelin、来自牛津大学和弗朗西斯·克里克研究所(Francis Crick Institute)的Peter J. Ratcliffe以及约翰霍普金斯医学院(Johns Hopkins University School of Medicine)的Gregg Semenza。

看起来是不是不明觉厉,但又不知道这三个大神牛在哪里?

  我们知道,氧气对于人类动物的重要性,天天呼吸,却常不经意间忽略它的存在。

  这次的诺贝尔生理学或医学奖给了这三位大神,就是因为他们的研究解释了为什么对人类以及绝大多数动物而言,氧气是那么的重要。

  简单来说,理解细胞在分子水平上感受氧气的基本原理,对深入理解肿瘤或是癌症的发生十分重要,另外低氧和许多疾病有关,例如心肌梗死、中风和外周血管疾病等。

  2019诺贝尔生理学或医学奖

  在众多基础医学研究中,人体内部的氧气调节机制一直是重点,尽管呼吸氧气是每个人都习以为常的事情,但人的细胞和组织究竟如何调节和适应氧气水平的变化,直至这三位科学家的研究,我们才得以一窥一二。

  今年的诺贝尔生理或医学奖获得者,揭示了细胞如何感知和适应氧气变化,这一生命中最重要的适应过程之一的机制。他们为我们了解氧水平如何影响细胞代谢和生理功能奠定了基础,他们的发现也为抗击贫血、癌症和许多其他疾病的新策略铺平了道路。

  动物需要氧气将食物转化为可用的能量,几个世纪之前,人类就理解氧气的基本重要性,但细胞如何适应氧气含量水平的变化一直是未知的。上述三位获奖者发现了细胞是如何感知和适应氧气含量的变化的,他们发现了调节基因活性以应对不同氧气含量水平的分子机制。

  揭秘氧气对人类的影响

  众所周知,包括人类在内,绝大多数的动物离不开氧气。但我们对于氧气的需求,却又必须达到一个微妙的平衡。缺乏氧气,我们会窒息而死;氧气过多,我们又会中毒。

  三个获奖者之一的美国学者小威廉·G·凯林(William G. Kaelin Jr)在听说获奖消息时,心中是怎样的感受。要知道,几十年前,他曾一度走在放弃科研的边缘。

  尽管以学霸级的表现在杜克大学获得数学与化学的学位,威廉对实验室的工作却没有太多好感。“实验室给我的感觉很糟糕,”威廉说:“所以当时我认为做医生才是正确的选择。”

  在约翰霍普金斯医院经历了短暂的实习后,威廉来到了丹娜·法伯癌症研究所,开始接受临床肿瘤学的训练。然而为了达到毕业要求,威廉不得不进行两年的基础研究。就这样,他阴差阳错地回到了实验室。

  如果你以为威廉就此爱上了科研工作,那可就大错特错了。事实上,这次实验室之旅堪称“灾难”。在威廉开始工作后不到4个月,实验室就关门大吉。“我的人生中充满了这样那样的迹象,告诉我实验室的科研生活不适合我”,威廉在事后回忆说。

  在迷惘与困境中,大卫·利文斯顿(David Livingston)教授向威廉伸出了援手,将他纳入实验室。利文斯顿教授是视网膜母细胞瘤研究的先驱之一,在阐明这种癌症的机理上极有造诣。在利文斯顿教授的实验室中,威廉分离出了E2F蛋白,并发现它能够结合DNA,促进细胞增殖。在通常的情况下,E2F会被抑癌蛋白RB抑制,从而防止细胞过度分裂。然而当RB蛋白出现突变时,细胞就会不受控制地分裂,导致视网膜母细胞瘤的诞生。

  这段意外的经历彻底改变了威廉的职业规划。在能同时接触癌症患者和一线癌症研究的情况下,威廉认识到“对这些患者来说,最终的希望还是来自对癌症分子机制的精准理解,以及由这些知识转化成的有效疗法。”

  在1992年,威廉开设了属于自己的实验室。在寻找潜在的科研项目中,他了解到了一种叫做希佩尔-林道综合征(von HiPPel-Lindau disease)的遗传疾病。这种疾病的患者会在肾脏,肾上腺、胰腺以及中枢神经系统等位置生出肿瘤。威廉注意到,这些肿瘤都生长在血管丰富的部位,而且它们会分泌促红细胞生成素,刺激红细胞的产生。这些特点都表明,氧气可能在它们的生长中起到了关键作用。

  后续的研究结果也证明了这一点。当时,人们已经找到了和希佩尔-林道综合征相关的基因VHL。威廉的研究团队则发现在氧气充足时,VHL蛋白会标记一种叫做HIF的缺氧诱导因子,让它降解;而在氧气不足的情况下,VHL就失去了标记HIF的能力,因此HIF能继续留在细胞内起作用,并促进血管和红细胞的生成。

  可是,这些细胞是怎么知道周围氧气是否丰富呢?

  经过多年的探索,威廉与团队给出了答案:原来在氧气充足的情况下,细胞内羟化酶的效率会有所增加,使HIF蛋白获得一个羟基。而VHL能够识别这个羟基,并启动后续的调节功能。这项突破性的发现是人类首次意识到羟基化对于细胞信号通路有着至关重要的作用,它也因此刊登在了2001年的《科学》杂志上。

  更重要的是,威廉的这个发现具有普适性。在多种疾病中,他的团队都发现了氧气在肿瘤形成过程中起到的作用。譬如肾癌患者的VHL基因往往会出现突变,导致人体内产生过量的VEGF(血管内皮生长因子),而这又会促进血管和红细胞的生成。基于这一原理,新药研发人员针对VEGF这一靶点开始研发新药。目前,FDA已经批准了多种用于治疗肾癌的VEGF抑制剂。

  另外一个获奖者是英国学者彼得·拉特克利夫爵士(Sir Peter J. Ratcliffe)。

  Peter J. Ratcliffe是一位英国医学家、分子生物学家,现在剑桥大学纳菲尔德医学科担任教授和临床医学系主任。他生于1954年3月14日,出生在兰开夏郡,母校兰开斯特皇家男子文法学校。后在剑桥大学和伦敦圣巴塞洛缪医院学习医学。于1978年毕业移居牛津,在牛津大学(Oxford University)接受肾脏医学培训,特别着重于肾脏氧合作用,主要以对缺氧的研究知名。1989年,他建立了一个新实验室以从事细胞氧传感途径的研究。我们目前对缺氧的大部分理解是来自Ratcliffe实验室。

  第三位获奖者是美国学者格雷格·L·塞门扎(Gregg L. Semenza)

  Gregg L. Semenza,出生自纽约,美国人,现为约翰·霍普金斯大学医学院教授,细胞工程研究所血管计划的主任。Semenza先后在哈佛大学获得了文学学士学位,在宾夕法尼亚大学获得了医学博士学位,在杜克大学医学中心完成了儿科住院医师的工作,并在约翰·霍普金斯大学进行了医学遗传学的博士后研究。Semenza博士于1990年加入约翰·霍普金斯大学。Semenza在2008年评选为美国科学院院士,2016年获拉斯克基础医学研究奖。

  20世纪90年代,Ratcliffe教授和Semenza教授发现了一段特殊的DNA序列。如果把这段DNA序列安插在其他基因附近,那么在低氧的环境下,这些基因也能被诱导激活。也就是说,这段DNA序列其实起到了低氧环境下的调控作用。而一旦这段序列出现突变,相关基因就无法启动。

  随后,研究发现,这段序列在细胞内调控了一种叫做HIF-1的蛋白质,由两个亚基HIF-α和HIF-1β组成,HIF-α目前已经有三种HIF-1α与HIF-2α,和HIF-3α。在缺氧的环境下,HIF-1能够结合并激活特定基因。HIF具有转录因子活性,即具有控制基因表达的能力,而控制HIF的开关就是氧气浓度。

  揭示生物氧气感知通路,不仅在基础科学上有其价值,还有望带来创新的疗法。比如倘若能通过调控HIF-1通路,促进红细胞的生成,就有望治疗贫血。而干扰HIF-1的降解,则能促进血管生成,治疗循环不良。

  另一方面,由于肿瘤的生成离不开新生血管,如果我们能降解HIF-1α或相关蛋白(如HIF-2α),就有望对抗恶性肿瘤。目前,已有类似的疗法进入了早期临床试验阶段。

  总结来说,这三名科学家的发现在基础研究和临床应用上,都有着重要价值。对于生物感知氧气通路的精妙揭示,更是彰显了人类在挑战未知上的智慧。我们再次祝贺这三名科学家。能够获得诺贝尔生理学或医学奖,是对他们所做成就的最佳认可!

  关于诺贝尔奖

  1895年11月27日,瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德 伯恩哈德 诺贝尔(Alfred Bernhard Nobel)签署了他最后的遗嘱,将财产中的最大一份给了一系列奖项,即诺贝尔奖。诺贝尔奖分设物理、化学、生理学或医学、文学、和平和经济学六个奖项。

  诺贝尔奖的奖金来自诺贝尔所成立基金的利息或投资收益。随着诺贝尔基金的收益变化,诺贝尔奖的奖金有所浮动。

  2001年至2011年的单项奖金为1000万瑞典克朗,2012年至2016年因基金收益下降,奖金下调为800万瑞典克朗。2017年,基金财务状况好转,奖金改为900万瑞典克朗。 

  其中,诺贝尔生理学或医学奖是根据已故的瑞典化学家阿尔弗雷德·诺贝尔的遗嘱而设立的,目的在于表彰前一年在生理学或医学界做出卓越发现者。该奖项于1901年首次颁发,由瑞典首都斯德哥尔摩的医科大学卡罗林斯卡医学院负责评选,颁奖仪式于每年12月10日(诺贝尔逝世的周年纪念日)举行。

  诺贝尔生理学或医学奖近5年获奖者

  2018年,美国免疫学家詹姆斯 艾利森与日本生物学家本庶佑,凭借他们发现负性免疫调节治疗癌症的疗法方面的贡献”。

  2017年,三名美国科学家杰弗里 霍尔、迈克尔 罗斯巴什和迈克尔 扬,凭借他们在研究生物钟运行的分子机制方面的成就获奖。

  2016年,日本科学家大隅良典凭借在细胞自噬机制研究中取得的成就获奖。

  2015年,中国女药学家屠呦呦,以及爱尔兰科学家威廉 坎贝尔和日本科学家大村智,凭借他们在寄生虫疾病治疗研究方面取得的成就获奖。

  2014年,拥有美国和英国国籍的科学家约翰 奥基夫以及两位挪威科学家梅-布里特 莫泽和爱德华 莫泽,凭借他们发现大脑定位系统细胞的研究获奖。

  

免责声明:本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任。涉及到版权或其他问题,请及时联系我们。

猜你喜欢